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We study the depinning transition of the quenched Mullins-Herring equation by direct integration method. At
critical force Fc, the average surface velocity v�t� follows a power-law behavior v�t�� t−� as a function of time
t with �=0.160�5�. The surface width has a scaling behavior with the roughness exponent �=1.50�6� and the
growth exponent �=0.841�5�. Above the critical force, the steady state velocity vs follows vs��F−Fc�� with
�=0.289�8�. Finite size scalings of the velocity are also discussed.
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Recently, there has been considerable interest in the study
of a driven interface in quenched random media. It is related
through various mappings to many other physical phenom-
ena such as the immiscible displacement of fluids in porous
media �1�, the domain walls in magnetic systems �2�, the flux
movement in a superconductor �3�, and the invasion of liquid
in porous media �4�. The surface dynamics is described by
the coarse grained height variables h�x , t� which represent
the growing interface as a function of the lateral coordinate x
and the time t.

An interesting quantity of the surface growth is the dy-
namic scaling behavior of the interface width W, which is
defined as the root mean square fluctuation of the surface
height. The surface width in a finite system of lateral size L,
follows a scaling relation �5,6�,

W�L,t� = � 1

L � �h�x,t� − h̄�2�1/2

� L�f	 t

Lz
 , �1�

where h̄�t� is the average height at time t. The scaling func-
tion f�x� is x� for x�1 and f�x� is constant for x�1. The
exponents � and z are connected by the relation z�=�. The
width increases as t� initially �t�Lz� and it reaches a satu-
ration value W�L , t��L� for t�Lz. There is a time-
dependent length scale �x�t�� t1/z which describes the lateral
correlation of the surface height.

One of the simple equations for the interface pinning phe-
nomena in quenched random media is the quenched
Edwards-Wilkinson �QEW� equation,

�h�x,t�
�t

= ��2h + 	�x,h� + F , �2�

where F is the external driving force and 	�x ,h� is the
quenched random potential satisfying the relation
�	�x ,h�	�x� ,h���=2D��x−x����h−h��. There are many
studies on the QEW equation and the related models �7–13�.
The �2h term in Eq. �2� describes the relaxation process of
the surface height in the gravitational field where the down-
hill current is proportional to the height differences. Since

the gravitational potential is very small compared to the
chemical binding energy, one can ignore it. The motion of an
atom depends on the number of connected bonds, which in-
creases with the curvature of the site. So the surface chemi-
cal potential can be proportional to the surface curvature. If
the surface current is driven by the differences in the surface
chemical potential, one can replace �2h by −�4h in the QEW
equation �6,14�. So it would be interesting to consider a
quenched Mullins-Herring �QMH� equation �15�,

�h�x,t�
�t

= − K�4h + 	�x,h� + F . �3�

The first term, −K�4h, describes relaxation by surface diffu-
sion. The equation could be related to the dynamics of the
liquid in porous media.

In this paper, we study the quenched Mullins-Herring
equation by using a numerical direct integration method and
find that �
1.50, �
0.841, and z
1.78 at the critical
force. Note that the thermal MH �TMH� equation with ther-
mal noise 	�x , t� has �=3/2, �=3/8, and z=4 in one sub-
strate dimension �16�.

When an interface is driven by an external force F in
disordered media, its motion shows a pinning-depinning
transition. The quenched disorder generates random pinning
forces effectively. If the driving force F is sufficiently
weak compared to the random pinning force, the interface
is pinned by the disorder. If F is strong enough, the
interface moves indefinitely with the growth velocity v,

v�t�=dh̄�t� /dt. At critical force Fc, we expect that v�t� de-
creases following

v�t� � t−�, �4�

where t is the time.
In the vicinity of the depinning transition, the average

velocity at the stationary state follows

vs�F� � �F − Fc�� �5�

for F
Fc, where � is the velocity exponent.
We can define various correlation lengths for a growing

surface. Near Fc, there is a lateral correlation length �x�F�,
which diverges as F approaches the critical force Fc,*Corresponding author. Electronic address: jmkim@ssu.ac.kr
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�x�F� � �F − Fc�−�x. �6�

One can consider a correlation length in the height direction
�h�F�, which follows

�h�F� � �F − Fc�−�h. �7�

Since it should be proportional to the surface width, �h�W
���x��, there is a relation �=�h /�x. The correlation time
��F� can be defined as

��F� � �F − Fc�−�t, �8�

which describes the correlation in the time direction. From
the above relations, one can obtain z=�t /�x. It should be the
same as the dynamic exponent described in the surface width
of Eq. �1� because there is only one dynamic exponent in the
system.

We study the QMH equation �3� by a direct numerical
integration method,

h�x,t + �t� = h�x,t� + �t�F + 	�x, h̃� − K�h�x − 2,t� − 4h�x

− 1,t� + 6h�x,t� − 4h�x + 1,t� + h�x + 2,t��� .

�9�

The noise 	�x , h̃� is uniformly distributed in �−�3,�3� where

h̃ is the integer part of h�x , t�. For simplicity, K=1 is chosen,
and the time steps used are �t=0.01 in most cases. The
change in the time steps is not expected to change the expo-
nents. We verify that smaller time step ��t=0.001� did not
change the numerical results. The external force F is a con-
trol parameter of the growth dynamics. The integration pro-
cesses are performed in one substrate dimension with a
periodic boundary condition on the system of size L. The
height of each site is updated simultaneously following
Eq. �9�.

We measure the growth velocity as a function of time for
various values of the external driving force F. We find
Fc=0.988 where v�t� shows a power-law behavior following
Eq. �4�. As shown in Fig. 1, in the depinned region F
Fc, v
decreases with time at the beginning, and then it becomes a
constant at the later time. While in the pinned region,
F
Fc, v decays faster than a power-law behavior and be-
comes zero eventually. At the critical force, v�t� follows a
power law t−� with

FIG. 1. Log-log plot of v�t� for L=16384 and F=0.985, 0.986,
0.9872, 0.9876, 0.988, 0.9884, 0.9888, and 0.99 from the top to the
bottom. The straight line is for F=0.988. Log-log plot of vt� against
time t with �=0.160 is shown in the inset.

FIG. 2. Log-log plot of the surface width against time at
Fc=0.988. The saturated width Wsat against L are shown in the
inset.

FIG. 3. Log-log plot of the steady state velocity vs as a function
of F−Fc for L=4096. vs against F in linear scales is shown in the
inset.

FIG. 4. The scaling plot according to Eq. �14� with �=0.160 and
z=1.78 at Fc. Log-log plot of v against t is shown in the inset.
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� = 0.160�5� . �10�

In the inset of Fig. 1, vt� against t in log-log plot is given.
With �=0.160, we get a nice straight line at Fc=0.988. For
F
Fc, it curves upward as a function of time while it goes
downward for F
Fc. So there is a phase transition between
the pinned phase and the depinned phase as varying the ex-
ternal force.

At the transition point, we monitor surface width as a
function of time for various system sizes. As shown in Fig. 2,
it increases as t� for early time and eventually saturates when
the parallel correlation �x is of the order of the lateral system
size L. For the roughness exponent � describing the satura-
tion of the interface fluctuation, we use the relation
Wsat�L� in the steady state region t�Lz as shown in the
inset of Fig. 2 and obtain

� = 1.50�6�, � = 0.841�5�, and z 
 1.78. �11�

Near Fc, the surface is affected by the quenched noise. At
or below Fc, some part of the surface is pinned. Therefore,

one can consider that h̄�t� is approximately proportional to

W�t�. Since h̄�t��W�t�� t� for early time, v�t�=dh̄�t� /dt
� t�−1 at Fc. From Eq. �4� we get a relation, �+�=1 �17�.
Our exponents, �=0.841 and �=0.160, satisfy the relation
very well.

In the depinned regime the surface grows, and the growth
velocity becomes constant. Above Fc, we measure the steady
state velocity as a function of F for a system size L=4096 as
shown in Fig. 3. From the relation Eq. �5�, we obtain

� = 0.289�8� . �12�

� is expected to be �t−�h since vs��h /���F−Fc��t−�h. Also,
� and � have the relation �=� /�t �18�.

We obtain the exponents �, �, and � from the numerical
simulation data. The other critical exponents are estimated
by several scaling relations z=� /�, �t=� /�, �x=�t /z, and
�h=��x. Therefore, we get,

z 
 1.78, �t 
 1.81, �x 
 1.01, and �h 
 1.52.

�13�

These exponents satisfy the relations, �=�t−�h
0.29 and
�=� /z=�h /�t
0.84 within the error bar.

The validity of the scaling relations is further studied by
the finite size scaling of the velocity v�t�. At the critical
force, v�L , t� follows

v�L,t� � t−��t�t/Lz� . �14�

We plot v�L , t�t−� against t /Lz with �=0.16 and z=1.78 as
shown in Fig. 4 and get a nice data collapse suggesting that
our values of the critical exponents are consistent with each
other.

Near the critical force, v�F , t� for a sufficiently large sys-
tem has a scaling formula

v�F,t� � t−�� f�t�F − Fc��t� . �15�

The plot of v�F , t�t� against t�F−Fc��t is given in Fig. 5.
Our scaled data are collapsed onto two different curves with
�=0.16 and �t=1.81 for L=16384. The collapsed data for
F
Fc are curved upward, and the data for F
Fc are curved
downward.

We study the depinning transition of the MH equation in
random media. Since the growth velocity follows a power-
law behavior as a function of time at the critical point,
we can determine the critical force accurately. Using the nu-
merical integration of the QMH equation, �=1.50�6�,
�=0.841�5�, �=0.160�5�, and �=0.289�8� are obtained at
Fc
0.988. The other exponents z
1.78, �t
1.81,
�x
1.01, and �h
1.52 are estimated through the relations,
z=� /�, z=�t /�x, �=� /�t, and �=�h /�x. It is interesting that
the value of the dynamic exponent z
1.78 is quite small
compared to z=4 of the thermal MH equation. The measured
values of the exponents in our work satisfy the scaling rela-
tions �+�=1 and �=�t−�h very well. Therefore, the surface
growth in the quenched noise can be classified by only three
independent exponents �, �, and �. All the other critical
exponents can be reduced from them. Experiments and ana-
lytic calculation of the exponents for the QMH equation are
required.
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